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Abstract. We use the theory of the symmetric group to construct a generalised transfer 
matrix from which we can obtain the Lyapunov exponents of the original transfer matrix and 
the localisation lengths for an electron in a random potential. We compare our results with 
those of numerical simulations. The generalised transfer matrix has infinite dimensions but 
can in practice be truncated to finite dimensions. In the limit of an infinite matrix the theory 
is exact. 

1. Introduction 

Anderson [l] was the first to show that the presence of disorder introduces not only a 
mean free path but also a second length scale, the localisation length, which describes 
the exponential decay in amplitude of localised electron wavefunctions. It is this second 
length scale that is relevant to the transport problem: when it is infinite the system is 
delocalised and particles diffuse in a semiclassical manner; when it is finite the system 
exhibits Anderson localisation. 

In general there is a whole set of length scales associated with a system: as many as 
there are parallel channels. The inverses of these lengths are known as the Lyapunov 
exponents [2] which characterise the long-length behaviour of the system and are key 
quantities in a description of the statistics. 

One-dimensional systems are relatively well understood. In two and three dimen- 
sions the key technique has been numerical simulations [3-51. In these studies the 
Lyapunov exponents (or localisation lengths) are calculated for products of random 
matrices that describe systems of finite cross section. Extrapolation to fully two- and 
three-dimensional systems is accomplished using finite size scaling. The results are found 
to be consistent with some of the conclusions of the scaling theory of localisation [6,7], 
but several puzzles still remain. 

It is the purpose of this paper to introduce a more direct method for calculating all 
the Lyapunov exponents of a system, one that can be made as accurate as desired by 
diagonalising a larger matrix in much the same manner as band theory works with 
truncated secular equations. 

The main difficulty confronting a more analytic approach to the problem is that a 
lack of translational symmetry prevents the use of Bloch’s theorem. In this paper we 
t Present address: Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada 
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continue work which show how to reintroduce symmetry into the problem. This method 
has already proved very successful in one dimension [8-101 and recently Pendry and 
Castafio have calculated the density of states for two- and three-dimensional disordered 
systems [ 11,121 using these ideas. Here we show how to calculate thelocalisationlengths, 
which are more directly related to the electrical conductivity. 

A quasi-one-dimensional disordered system can be studied by dividing it into layers. 
The scattering properties of a layer are described by a transfer matrix. Localisation 
effects due to multiple scattering then appear in the multiplication of the transfer 
matrices. Each transfer matrix will contain random elements corresponding to the 
disorder in each layer. We assume that the disorder in each layer obeys the same statistics. 
Using this ‘statistical symmetry’ we are able to make progress by using the theory of the 
symmetric group to define generalised transfer matrices. We then make an analytic 
continuation to obtain the Lyapunov exponents. 

2. Symmetry reduction 

In this and the following section we show how to use the theory of the symmetric group 
to obtain the Lyapunov exponents associated with a product of random matrices. Let 

L, 

T L ,  = I1 M ,  
n = l  

where the Mn are independent, identically distributed random matrices. We calculate 
the Lyapunov exponents as follows. Let IwJ, (wii ( i  = 1, . . . , p )  be a set of orthogonal 
vectors. Then consider the determinant of thep  X p matrix formed from the elements 

(Wi/TLIIWj) (1 G [ i , j ]  ~ p ) .  (2) 

We define D p (  TL,) as the maximum over the set of determinants obtained by taking all 
distinct sets of p orthogonal vectors. We then obtain the sum of the p largest Lyapunov 
exponents r, as [13] 

We expect our results to be independent of the representation of TLL. In the following 
we assume a convenient representation where IwJj = 6i , j ,  1 G [ i , j ]  G m and m is the 
dimension of TL, . 

The first step in our symmetry analysis is to note that this set of determinants can be 
obtained as the diagonal elements of the antisymmetric projection of the direct product 
of TL, with itself p times. To obtain the projection we must first choose a basis for the 
antisymmetric subspace. A convenient basis for our purposes can be most easily defined 
by vertical Young tableaux. 

Let i l ,  . . , , i, be a set of strictly increasing integers 

1 G i l  < i2 < . . . < i, G m (4) 

The vector defined by this tableau has components 
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lZ4(i1 . . . i,)),, , p  = - jl . . . j f  an odd permutation of i l  . . . i, ( 5 )  I!! otherwise 

and (u ( i i .  . . i,)i has the same components. We can write this projection as a matrix 
Yp(TLz), with elements 

(u(zl  . . . i,)ITL, 8 .  . . €3 TL2 ( p  times)lu(jl . . . I , ) ) .  (6) 

Dp(TLz) is now the maximum over the diagonal elements of Yf. Noting that 
TL, 8 . . . @ TL, (p times) maps the antisymmetric subspace onto itself we can immedi- 
ately write 

Now consider the direct product of Y, with itself N times and its projection onto the 
symmetric subspace. We define a basis for the symmetric subspace using horizontal 
tableaux: 

where y is the dimension of Y,. The vector defined by this tableau has components 

j ,  . . . j N  a permutation of i l  . . . i N  
(9) 

otherwise 
bGl) * * . iN))jl..,jN 

where l; (i = 1, . . . , y )  is the number of i’s in il, . . . , iN, and (u ( i l  . , . iN)l has the same 
components. We can thus label each vector in this basis by a set of y positive integers 
11,  . . . , lY which satisfy 

Y 

I ,  = N .  
i = l  

We can now write the projection onto the symmetric subspace, X ( N ,  Y), as 

X ( N ,  Y)(Il . . . I, : k I  . . . k y )  = ( u ( l j ) l  Y @ .  . . €3 Y(Ntimes)/u(k;)) 

where the sum is over the set of y 2  positive integerspi,j satisfying 
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Y ? 

j =  1 i =  I 

Y 

The symmetric projection contains Dp” as the maximum over a subset of diagonal 
elements, since 

Again noting that Y 8 .  . . €9 Y (Ntimes) preserves the symmetric subspace, we see that 
X has the multiplicative property that 

This allows us to think of X as a generalised transfer matrix. 

disorder or randomness in M n  
The value of the symmetry reduction becomes apparent when we average over the 

making use of the ‘statistical symmetry’ mentioned earlier. The problem is then reduced 
to the consideration of a product of L, identical matrices. 

The main problem with the above analysis is that N is restricted to positive integer 
values or zero. To make progress we need an analytic continuation for N non-integer. 
We can then evaluate rp as 

3. Analytic continuation 

Pendry and Castano [11, 121 and Kirkman and Pendry [ 8 ]  have shown how we can 
analytically continue in N to allow us to define X ( N )  when N is non-integer. We outline 
their method below. 

Suppose that the (1-1) element is the diagonal element of Yp with largest modulus 
(the following is easily generalised to other cases) so that [ Yp  T,,)] 1,1 = D, ( TL,). Let 

L=12+ . . .  + I ,  K = k 2 + . . , + k y  (16) 

then we order X so that 

K = O  K = N  

Then 
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X(n) = L = o  

where Is) has components Is}, = a,, , and (SI  has the same components. 
So far N is integer and X ( N )  is finite in size but not necessrily ( N  + 1) X ( N  + 1) 

(unless Y is 2 X 2). This is because for given values of L and K there are in general 
multiple solutions of (16) for 1 2 .  . . ly and k 2 .  . . /cy, each pair of which gives a different 
matrix element of X .  

When N is non-integer we retain (11) for the matrix elements of our new continued 
Xmatrix but allow 1, and k l  to be non-integer 

l , = N - L  k l = N - K  (19) 
and order X a s  before but now allowing L and K to take any values in the range zero to 
infinity. This makes Xinfinite in size. In performing the summation in (11) we sum over 
all solutions to (12) withp,, non-integer but all the otherps positive integers before, so 
that 

O s L s N  
: G K < N I  

L , K > N  

I 

where 2' denotes the sum over allps exceptp,,. The only non-integer factorials appear 
as a ratio and are easily evaluated as 

and similarly k l ! .  

a positive integer? The answer is that it is block diagonal 
So how does the new 'continued' Xmatrix relate to the previous Xmatrix when N is 

L=CC L I 

The 0 s L ,  K < N block is identical to the previous X matrix at integer N .  This means 
that (18) is automatically valid for the new X matrix. That the continuation is correct 
and that (18) is valid for non-integer N is argued in more depth in [8]. Ultimately we 
check the continuation by comparison with published results obtained by alternative 
methods and indeed excellent agreement is obtained [7-11]. 

We can obtain a more explicit expression for rp by writing 
s 

where pi(N) are the eigenvalues and IN, i), (i, NI the right and left eigenvectors of 
X(N, Y p  ( M ) ) .  We now substitute (23) into (18), differentiate with respect to N and note 
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that Is} and ( S I  are eigenvectors of X ( N  = 0) with eigenvalue unity. If we denote this 
eigenvalue as pO(N = 0) then 

We can write (24) in a more transparent form by defining a matrix Z(N,  Y )  

X ( N ,  Y )  = Y:,Z(N, Y ) .  (25) 

Near N = 0 we can then write 
__- 
X ( N ,  Y )  = Z ( N ,  Y) + N I ~  Yl lZ (N ,  Y )  + 0 ( N 2 ) .  

We now use perturbation theory, exact in the limit of small N ,  to obtain an expansion in 
powers of Nfo r  pc(N) ,  then with reference to (24) we obtain 

where ac(N)  is the relevant eigenvalue of Z(N, Y ) .  Thus our result is that rp is equal to 
a ‘zero-order’ estimate plus a correction term. 

To generalise to other cases we simply note that if [Yp], ,L is the maximal diagonal 
element of Yp we allow only I , ,  k, andp,, non-integer and set 

L = I 1  + . . . + 1,-1 + 1,+1 + . * . I ,  (28) 

are similarly for K .  

4. Application to electron localisation 

To apply the method to the problem of electron localisation in a random potential we 
use the usual Anderson model with random site energies (diagonal disorder.) For 
simplicity we assume a two-dimensional geometry with L, atoms per layer. Then M ,  is 
a 2L, x 2L, matrix 

and H,, is an L, X L, matrix with elements 

[Hnl,,,  = ( E  - & n , i ) d i , ,  + P V ~ ~ , , * I *  (30) 

Here is the site energy of the ith atom in the nth layer and /3 is the ratio of the 
constant hopping matrix elements within a layer to between layers. ‘Statistical symmetry’ 
corresponds to the E’S being independently and identically distributed. Before applying 
the symmetry analysis we transform from a real-space representation to a momentum- 
space representation 

Ma + QMnQ-l  (31) 

where Q and Q-l  are the matrices of left and right eigenvectors of M .  In the limit of zero 
disorder this transformation diagonalises 2 (and also X) 
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Y 

Z ( N >  Y>(ll : k , )  = YTIL n y l , l % L , k ,  (32) 
1 = 2  

and L is given by (16). 
We now apply perturbation theory to obtain rp for weak disorder. If we have 

Y 

Y?l + II Y I 2  (33) 
1 = 2  

for any I , .  . . ly satisfying (16), we may apply non-degenerate perturbation theory to 
order ( E ’ )  to obtain cu,(N) = 1. So under this condition we have 

rp = Re ln(D,(M)). (34) 

If we expand the logarithm to order ( E ~ )  this agrees with the perturbation theory 
calculations of Derrida et a1 [ 131 and Slevin [ 141. The condition (33) is in general slightly 
less restrictive than that given in [13]. 

When condition (33) is not satisfied we must use degenerate perturbation theory. 
This is a considerable complication. Recently however, Zannon and Derrida [ 151 have 
made progress in developing weak disorder expansions for degenerate cases. 

5. Numerical results 

To go beyond perturbation theory we diagonalise the X matrix, or equivalently the Z 
matrix, numerically. The simplest non-trivial case to which we can apply the theory is 
that of a quasi-one-dimensional system with two atoms per layer. For such a system M n  
is a 4 X 4 matrix and Hn has the form 

r .. 

L J 

and we assume periodic boundary conditions in the transverse direction. We use a binary 
alloy distribution for the ES 

P ( E )  = 4b(E - 4W) + &a(& + I W )  (36) 

and we transform to a momentum representation using 

E - E ,  - 2p COS qi = 2 COS qi (376) 
with q1 = 0 and q2 = n. E, is set non-zero to avoid Q becoming singular at the band 
edges of the pure system. It should be noted that with E,  non-zero neither Z nor X i s  
diagonal for zero disorder. We set /3 = 1. 



3080 K Slevin et a1 

Table 1 

Size X (  Y,) 
Order X p = 1 , 3  Size X (  Y2)  

1 
4 

10 
20 
35 
56 
84 

120 

After analytical continuation X is infinite in size. To proceed with numerical cal- 
culations we must make an approximation by truncating X to a finite size. To do this we 
set a maximum value for L and K ,  which we call the order of the Xmatrix. We can then 
diagonalise the matrix numerically and see how po changes with order. In table 1 we 
show how the truncation size increases with order for the case where the M ,  are 4 X 4 
matrices and we are calculating rp with p = 1 , 2 , 3 .  We are able to make a reduction in 
the truncation size by noticing that after averaging the Xmatrix is block diagonal. It can 
be shown that whenp = 1 or 3 it is only necessary to include elements of X( Yp)  for which 

1, + 1 3  = k2 + k3. 

13 + 14 = k3 + kq. 

(38) 

(39) 

When p = 2 we need only include elements of X (  Y2)  for which 

This corresponds to the figures in parentheses in table 1. In general we find that ,uo 
converges quickly and in the following calculations we used a maximum order of 4 for 
l7, and 5 for rl and r3. Convergence is slowest near E = 0. To obtain the maximum 
exponent, equal to r l ,  we need only carry out the symmetric projection as Y, is the usual 
transfer matrix. For E < 0 we allow pll non-integer and for E > 0 we allow p22 non- 
integer. 

To obtain r2, the sum of the two largest exponents, we take the antisymmetric 
projection of M 63 M with respect to the basis vectors defined by the tableaux 

Y, is a 6 X 6 matrix and we continuepll at all energies. The smallest positive exponent 
is found as r2 - rl. This gives the longest localisation length, the length relevant to 
transport properties. In this case r2 is also the sum of all positive Lyapunov exponents 
and so the integrated density of states I ( E )  can be found from its imaginary part. This is 
developed by Pendry and Castafio [ l l ,  121. 

Our results for variousvalues of the disorder parameter Ware plotted against results 
from a numerical simulation provided by A MacKinnon in figures 1-3. Comparison of 
our results with those of the numerical simulation show good agreement except near 
E = 0. The error arises in the most part from the calculation of the largest exponent, as 
can be seen by reference to figure 4, where good agreement is obtained for r2 at all 
energies. 
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Energy 

I L I 

Energy 
0 2 4 

Figure 1. Comparison of localisation lengths 
obtained from the symmetry reduction (full 
curves) and numerical simulation (symbols) for 

Figure 2. Comparison of localisation lengths 
obtained from the symmetry reduction (full 
curves) and numerical simulation (symbols) for 

disorder W = 1. The disagreement near E = 0 is 
discussed in the text. 

disorder W = 3. 

I b  

1 

0 2 4 
Energy 

0 2 4 
Energy 

Figure 3. Comparison of localisation lengths 
obtained from the symmetry reduction (full 
curves) and numerical simulation (symbols) for 
disorder W = 5 .  

Figure 4. r2 is given correctly at all energies, 
showing that error in the localisation lengths near 
E = 0 arises for the most part in rl .  

So what is going wrong near E = O? One suggestion is a breakdown in the validity of 
expression (3) for rp. We have been able to rule this out by direct evaluation of (3) using 
a numerical simulation. To check our theory further, and also equation (3), we note 
that because TL is symplectic, r3 is also equal to the largest exponent. We take the 
antisymmetric projection of M C3 M C3 M with respect to the basis 

so Y3 is a 4 X 4 matrix and we allow p I 1  non-integer for E < 0 and p2* for E > 0. This 
gives the same results as obtained by calculating rl, with the same problem near E = 0. 
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This seems to leave two furtherpossibilities. The first is that the apparent convergence 
of our results near E = 0 is deceptive. This is a possibility as the zero disorder matrix is 
highly degenerate at E = 0 for the case L, = 2. Another possibility is that there is some 
form of symmetry breaking which invalidates the analytic continuation near E = 0. This 
would seem very puzzling in view of the accuracy of our results for r2 at all energies, and 
for rl and r3 at other energies. 

6. Conclusions 

We have applied a symmetry analysis and made an analytic continuation to obtain 
the localisation lengths for an electron in a disordered system. We obtain excellent 
agreement except in the cases indicated. 
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